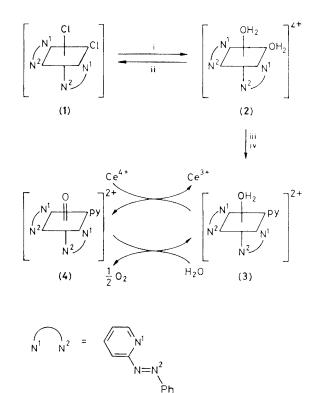
The Ru^{II}(OH₂)–Ru^{IV}(O) Couple in a Ruthenium Complex of 2-(Phenylazo)pyridine: Homogeneous Catalysis of the Oxidation of Water to Dioxygen

Sreebrata Goswami, Akhil R. Chakravarty, and Animesh Chakravorty*

Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Calcutta 700 032, India

In acidic solution $[Ru^{II}(OH_2)(py)L_2]^{2+}$ can be oxidised to $[Ru^{IV}(O)(py)L_2]^{2+}$ in a single reversible step $(E_{298}^{\circ} = 1.20 \text{ V})$ and the oxidised complex catalyses the dehydrogenation of water to dioxygen in the presence of Ce⁴⁺ [py = pyridine; L = 2-(phenylazo)pyridine].


The role of aquo- and oxo-complexes of ruthenium as catalysts in oxidation reactions is of current interest.¹ We report herein some reactions of the new complexes (3) and (4) (Scheme 1) isolated as diperchlorates. The structures of the precursor complexes $(1)^2$ and $(2)^3$ are known.

In acidic aqueous solution (pH 1–4) complex (3) displays a cyclic voltammetric response (platinum electrode) near 1 V vs. S.C.E. (saturated calomel electrode). This response is characterised by: (a) both anodic and cathodic peak currents indicating a two-electron transfer, (b) a peak-to-peak separation (ΔE_p) of 30 \pm 5 mV, and (c) a shift of peak potentials with pH at the rate of about 60 mV per unit change of pH (Figure 1). Clearly the reversible single-step 2e⁻ + 2H⁺ electrode process (1) is involved. The formal potential (E_{298}°) of the process calculated from equation⁴ (2) is 1.20 V vs.

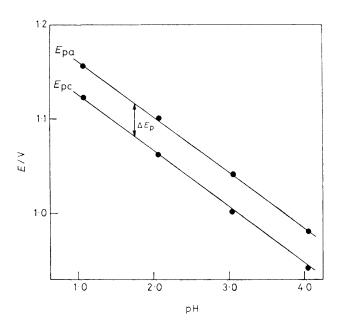
$$(4) + 2e^{-} + 2H^{+} \rightleftharpoons (3) \tag{1}$$

S.C.E. (E_{pa} and E_{pc} are anodic and cathodic peak potentials respectively). The couple (1) is the first example of its type

$$E_{298}^{\circ} = 0.5 (E_{pa} + E_{pc}) + 0.059 \text{ pH}$$
 (2)

Scheme 1. i, Ag^+ ; ii, Cl^- ; iii, pyridine (py); iv, H^+ (all in aqueous solution).

in ruthenium chemistry. The conversion of (3) into (4) is conveniently achieved chemically using Ce^{4+} in 1.0 mol dm⁻³ HClO₄ or H₂SO₄.


In solution the brown complex (4) is reconverted into (3). The net reaction is represented by equation (3). The progress of this reaction can be conveniently followed using the

$$(4) + H_2O \rightarrow (3) + \frac{1}{2}O_2$$
 (3)

intense ($\epsilon = 11\ 200\ dm^3\ mol^{-1}\ cm^{-1}$) band of (3) at 530 nm; (4) has no absorption at this wavelength. The pseudo-firstorder rate constant in 1.0 mol dm⁻³ HClO₄ at 298 K is $2.5 \times 10^{-3}\ s^{-1}$. When excess of Ce⁴⁺ is present, the catalytic cycle shown in Scheme 1 becomes operative and virtually all the ruthenium reappears as complex (3). On addition of more Ce⁴⁺ the cycle repeats itself. The progressive accumulation of dioxygen in such solutions is established with the help of the characteristic reduction peak (O₂ \rightarrow O₂⁻) at $-0.3\ V$. Whether dioxygen is formed directly ($\frac{1}{2}O_2 + 2e^- + 2H^+ \rightleftharpoons$ H₂O) or *via* the intermediacy of hydrogen peroxide ($\frac{1}{2}H_2O_2 +$ $e^- + H^+ \rightleftharpoons H_2O$; $\frac{1}{2}O_2 + e^- + H^+ \rightleftharpoons \frac{1}{2}H_2O_2$) is under

$$[Ru^{II}(OH_2)(py)(bipy)_2]^{2+} [Ru^{IV}(O)(py)(bipy)_2]^{2+}$$
(5) (6)

$$bipy = 2,2'-bipyridine$$

investigation. Cerium(IV) is known to oxidise hydrogen peroxide.

A comparison of complexes (3) and (4) with complexes (5) and (6) is in order. Complex (5) $(pK = 10.26)^1$ is a weaker acid than (3) $(pK = 6.8 \pm 0.05 \text{ at } 298 \text{ K})$. The conversion $(5) \rightarrow (6)$ occurs¹ in two discrete one-electron transfer steps. The couple (6)/(5) *fails* to mediate the *catalytic* oxidation of water to dioxygen by Ce⁴⁺. The high potential of the couple (1) and its single-step character are believed to be crucial for the facile interfacing of the couple (1) and the water oxidation couple into reaction (3): a prerequisite for the observed catalytic process. The relatively low pK of (3) is no doubt a contributing factor in causing the transfer of $2e^- + 2H^+$ to occur in a single step [couple (1)].

Financial support provided by Council of Scientific and

Industrial Research, and Department of Science and Technology, Government of India, is gratefully acknowledged.

Received, 10th August 1982; Com. 953

References

- B. A. Moyer and T. J. Meyer, *Inorg. Chem.*, 1981, 20, 436;
 J. Am. Chem. Soc., 1978, 100, 3601; B. A. Moyer, M. S. Thompson, and T. J. Meyer, *ibid.*, 1980, 102, 2310.
- S. Goswami, A. R. Chakravarty, and A. Chakravorty, *Inorg. Chem.*, 1982, 21, 2737; 1981, 20, 2246; R. A. Krause and K. Krause, *ibid.*, 1980, 19, 2600.
- 3 S. Goswami, A. R. Chakravarty, and A. Chakravorty, *Inorg. Chem.*, in the press.
- 4 J. G. Mohanty and A. Chakravorty, *Inorg. Chem.*, 1976, 15, 2912; 1977, 16, 1561.